在Python中对MySQL中的数据进行可视化

在Python中对MySQL中的数据进行可视化

技术教程gslnedu2025-02-26 10:53:3815A+A-

【数盟致力于成为最卓越的数据科学社区,聚焦于大数据、分析挖掘、数据可视化领域,业务范围:线下活动、在线课程、猎头服务、项目对接】

译: wayne

本教程的所有Python代码可以在网上的IPython notebook中获取。

考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版。(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科)

注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版)。如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分)。如果你用的是Mac,我们推荐你购买并下载VMware Fusion,在上面安装Ubuntu桌面版。你也可以通过Zareason购买一台便宜的预装Ubuntu桌面版/服务器版的笔记本或服务器。

使用Python读取MySQL的数据并绘图很简单,所有你需要的工具都可以免费下载。本文会展示怎么做。如果你遇到问题或者卡住了,可以给feedback@plot.ly发送邮件,也可以在本文下面评论,或者在tweeter上@plotlygraphs。

第1步:确保MySQL已安装且在运行

首先,你需要有一台安装了MySQL的计算机或服务器。你可以通过以下方法检查MySQL是否安装:打开控制台,输入“mysql”,如果你收到MySQL无法连接的错误,这意味着MySQL安装了,但是没有运行。在命令行或“Terminal”中,尝试输入sudo /etc/init.d/mysql start并按回车来启动MySQL。

如果MySQL没有安装,不要失望。在Ubuntu中下载并安装只需一行命令:

shell> sudoapt-get installmysql-server --fix-missing

安装过程中会让你输入一个密码。安装结束后,你可以在终端中键入以下命令进入MySQL控制台:

输入“exit”就可以退出MySQL控制台。

本教程使用MySQL经典的“world”样例数据库。如果你想跟随我们的步骤,可以在MySQL文档中心下载world数据库。你也可以在命令行中使用wget下载:

shell> wget http://downloads.mysql.com/docs/world.sql.zip

然后解压文件:

(如果unzip没有安装,输入sudo apt-get install unzip安装)

现在需要把world数据库导入到MySQL,启动MySQL控制台:

进入控制台后,通过以下MySQL命令使用world.sql文件创建world数据库:

mysql> SOURCE /home/ubuntu/world.sql;

(在上面的SOURCE命令中,确保将路径改为你自己world.sql所在目录)。

上述操作说明摘自MySQL文档中心。

第2步:使用Python连接MySQL

使用Python连接MySQL很简单。关键得安装python的MySQLdb包。首先需要安装两项依赖:

shell> sudoapt-get installpython-dev

shell> sudoapt-get installlibmysqlclient-dev

然后安装Python的MySQLdb包:

shell> sudopip installMySQL-python

现在,启动Python并导入MySQLdb。你可以在命令行或者IPython notebook中执行:

创建MySQL中world数据库的连接:

cursor是用来创建MySQL请求的对象。

我们将在Country表中执行查询。

第3步:Python中执行MySQL查询

cursor对象使用MySQL查询字符串执行查询,返回一个包含多个元组的元组——每行对应一个元组。如果你刚接触MySQL语法和命令,在线的MySQL参考手册是一个很不错的学习资源。

rows,也就是查询的结果,是一个包含多个元组的元组,像下面这样: ((‘Aruba’, ‘North America’, 103000L, 78.4, 828.0), (‘Afghanistan’, ‘Asia’, 22720000L, 45.9, 5976.0), (‘Angola’, ‘Africa’, 12878000L, 38.3, 6648.0), (‘Anguilla’, ‘North America’, 8000L, 76.1, 63.2) …

其中的每个元组对应一行。绘成表格,看起来是像下面这样的:


NAMECONTINENTPOPULATIONLIFEEXPECTANCYGNP
237ZambiaAfrica916900037.23377
143MozambiqueAfrica1968000037.52891
148MalawiAfrica1092500037.61687
238ZimbabweAfrica1166900037.85951
2AngolaAfrica1287800038.36648

使用Pandas的DataFrame来处理每一行要比使用一个包含元组的元组方便。下面的Python代码片段将所有行转化为DataFrame实例:

完整的代码可以参见IPython notebook

第4步:使用Plotly绘制MySQL数据

现在,MySQL的数据存放在Pandas的DataFrame中,可以轻松地绘图。下面的代码用来绘制国家GNP(国民生产总值)VS平均寿命的图,鼠标悬停的点会显示国家名称。确保你已经下载了Plotly的Python库。如果没有,你可以参考一下它的入门指南。

fromplotly.graph_objs import*

xaxis=XAxis( title='Life Expectancy'),

yaxis=YAxis( type='log', title='GNP')

fig =Figure(data=data, layout=layout)

py.iplot(fig, filename='world GNP vs life expectancy')

完整的代码在这份IPython notebook中。下面是作为一个iframe嵌入的结果图:

利用Plotly的Python用户指南中的气泡图教程,我们可以用相同的MySQL数据绘制一幅气泡图,气泡大小表示人口的多少,气泡的颜色代表不同的大洲,鼠标悬停会显示国家名称。下面显示的是作为一个iframe嵌入的气泡图。

创建这个图表以及这个博客中的所有python代码都可以从这个IPython notebook中拷贝。

英文出处:moderndata.plot.ly

文章出处:
http://top.jobbole.com/tag/python/

—————————————————

数盟网站:www.dataunion.org

数盟微博:@数盟社区

数盟微信:DataScientistUnion

数盟【大数据群】272089418

数盟【数据可视化群】 179287077

数盟【数据分析群】 110875722

—————————————————

点击阅读原文,更多精彩技术、资讯内容~

点击这里复制本文地址 以上内容由朽木教程网整理呈现,请务必在转载分享时注明本文地址!如对内容有疑问,请联系我们,谢谢!
qrcode

朽木教程网 © All Rights Reserved.  蜀ICP备2024111239号-8